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Abstract. For autonomous dynamical systems with two degrees of freedom we derive an 
equation equivalent to the equation which follows from the condition of vanishing Poisson 
bracket. The new version of the equation is very suitable for an easier and more efficient 
handling of terms of the same degree in the velocity components appearing in second 
integrals of motion. The new variables used are suggested in the light of the inverse problem 
of dynamics. 

As an application we treat the problem of integrals of motion which are homogeneous 
polynomials in the velocity components x, j .  

1. Introduction 

Let us consider systems with two degrees of freedom. The Poisson bracket, usually 
written in Cartesian coordinates, is the tool either (i) for checking whether an expression 
of the position and velocity coordinates x, y ,  x, j ,  is a second integral associated with 
a given Hamiltonian of a conservative system or (ii) for constructing such a second 
integral, if it exists. Besides, concrete criteria are known by means of which one can 
check whether a given function = @(x, y ,  x, j , )  can stand for a second integral of 
motion of any dynamical system with potential function U (independent of the velocity 
components or even velocity dependent) which is not given in advance (Bozis and 
Ichtiaroglou 1987). 

One might say that the problem of constructing mathematical models of integrable 
systems is of equal interest to that of studying chaotic systems. Very few such systems 
are known and, of course, only some of them are, at the same time, of physical origin. 
A detailed list of references on this subject, treating exclusively integrable systems of 
two degrees of freedom, can be found in reports of Hietarinta (1986, 1987). 

On the other hand, during the last decade, the inverse problem in dynamics has 
received much attention and has enlightened the relation between a given potential 
and the totality of orbits to which this potential can give rise. For a list of references 
see, e.g., Bozis and Nakhla (1986). The inverse problem to which we refer is the 
following: ‘Given a one-parameter family of curves f(x, y )  = c and the energy depen- 
dence function E = E(f), find all potential functions U = U ( x ,  y )  which can generate 
these orbits’. To answer this question Szebehely (1974) offered a linear, first-order, 
partial differential equation in U. 

The aim of this paper is to write the vanishing Poisson bracket for a given dynamical 
system of two degrees of freedom in certain other variables coming from inverse 
problem considerations. The use of these variables makes the lengthy calculations 
involved in these sort of problems much easier to handle. Their main advantage lies 
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in that they are very cooperative in treating, by means of a unique function, a number 
of terms, algebraic and of the same degree in the velocity components. This is a rather 
usual situation. Consider, for instance, a second integral of motion which is polynomial 
in x, j of the fourth degree. Special cases of such integrals have been studied recently, 
by Sen (1987) among others. The existing symmetry under time reversal of the 
Hamiltonian requires that the integral contains only even powers in the velocity 
components. There are five coefficients to account for the terms of the fourth degree, 
three coefficients for the second-degree terms and one for the zeroth degree, in all nine 
coefficients, all functions of x and y. There is no essential problem with the highest- 
degree coefficients which are fourth-degree polynomials in x and y. However, this is 
not the case for the remaining 3 + 1 = 4 coefficients, for which an overdetermined system 
of partial differential equations is to be solved. The new version for the vanishing 
Poisson bracket, suggested in this paper, replaces the problem of determining the 3 + 1 
functions of x and y by a problem of finding 1 + 1 functions of x, y and another variable 
y. With respect to this last variable y the coefficients are polynomials and this simplifies 
the process. 

As an application, we prove the non-existence of non-trivial second integrals which 
are algebraic and homogeneous in the velocity coordinates x, 3 other than the angular 
momentum integral. This problem was recently considered by Thompson (1984) in a 
different approach. 

2. The inverse problem 

Consider a point I;, of unit mass, moving in the xy plane in the autonomous field of 
the potential function U = U(x, y ) .  If dots denote derivatives with respect to time r, 
the total energy E of the point I; is 

E = +(a2 + 9’) - U ( X ,  y ). (2 .1 )  
Szebehely (5974) has shown that all potential functions U ( x ,  y ) ,  which can give 

rise to a preassigned one-parameter family of curves 

f ( x ,  Y )  = c (2 .2 )  
with a preassigned dependence E = E (  f ( x ,  y ) )  of the total energy E on each member 
of the family, satisfy the following linear, first-order, partial differential equation in 
U(X,  y ) :  

- ,  
It is understood that, even with a given dependence E = E (  f ), infinitely many potentials 
can give rise to a family of curves (2 .2) .  

Let us now introduce the notation 

Y =&/L 
and 

OJ = Y X  - Y y .  

Equation (2 .3 )  is then written as 

(2.4) 

(2.5) 

2w 
U, + ?Uy = -(E + U). 

I +  y 2  
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It is seen that the function y ( x ,  y )  is equally as pertinent as the function f ( x ,  y )  in 
Szebhely’s equation but, of course, not to be forgotten is that E = E (  f) with functions 
f and y related by equation (2.4). Given the family (2.2), y is uniquely determined. 
Conversely, given a function y = y ( x ,  y ) ,  the family of orbits is also determined from 
the homogeneous linear partial differential equation (2.4). 

In geometrical terms, y can be considered as a variable indicating the slope at each 
point of the orbit, whereas w is a variable related to the curvature k of the orbit at 
the point considered; specifically it is w = ( 1  + y 2 ) 3 / 2 k  

Functions y and w appearing in equation (2.6) are now to be treated as new 
variables, to replace the velocity components x, j .  As to the position coordinates x, y 
they will not be altered. From equations (2.1) and (2.6) we obtain 

(2.7) x 2 + j 2  = ( 1  + y 2 ) (  U, + yU) , ) /w .  

On the other hand, since along any orbit f,x +f, j  = 0, we have 

y = - x / y .  (2.8) 

At this point let us introduce, for the partial derivatives up to the second order of the 
function U ( x ,  y ) ,  the conventional notation 

U, = p  UY = 4 U,, = r U,, = s U,, = t. (2.9) 

With the aid of equations (2.7) and (2.8) we then obtain 
1/2  P + Y 4  1/2  

x = - E y (  f--) + Y 9  
Y=.(--) 

(2.10) 

where E = *l.  
Inverting (2.10) we have 

y = - x / y  w = ( p j  - q X ) / > ’ 3 .  (2.11) 

The above transformations are to be accompanied by x = x, y = y. It is of interest 
to notice that the position coordinates x, y do not appear explicitly in equations (2.10) 
and (2.11) but only through the first-order partial derivatives p and q of the potential 
function U ( x ,  y ) .  

3. The Poisson bracket 

Suppose that, for a planar motion, apart from the energy integral (2.1), there exists a 
second integral of the motion 

(3 .1)  cp = cp(x, Y ,  x, i). 
The Poisson bracket [ E ,  cp] vanishes identically along any orbit traced by the 

material point Z, i.e. 

Q 3 +  (P$ (oi U,+ ‘Pp u p  = 0. (3.2) 

To express equation (3.2) in the new variables x, y ,  y,  w we denote by @(x, y ,  y ,  w )  
the second integral (3.1), i.e. 

cp(x, Y ,  x, Y )  = @k y ,  Y ,  w )  (3.3) 
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and, in view of equations (2.11), we write 

y r  - Is 
cpx =ax +- @ W  

Y3 

4's - xt 

Y3 
c p Y = @ ' y + -  @w 

x 2p 3x9 c p , = - @  Y y 2  Y + ( -- ,"+,p)@". 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

Taking into account the expressions (2.10) and inserting ( 3 . 4 ~ - d )  into equation (3.2) 
we obtain, after some straightforward calculations, 

yQX - m y  + + ( w 2 L +  wM)@' ,  = O  (3.5) 

where 

( 3 . 6 ~ )  L = -  39 
P + Y 9  

and 

y ( r  - t )  + ( y 2  - 1 ) s  

P+Y4 
M =  (3.6b) 

Equation (3.5) is our final result. If, for a given potential function V ( x , y ) ,  a 
solution @ = @(x,  y,  y, w )  in closed form of equation (3 .5)  can be found, then the 
potential is integrable. The corresponding second integral cp(x, y, 1, j )  = constant, in 
Cartesian coordinates, is obtained immediately in view of equations (3 .3)  and (2.11). 
The advantage of replacing equation (3.2) by (3.5) is the following: all terms of the 
same degree in x , j  (say n) of the second integral which we try to find are factored 
by the same power u - ~ "  of the new independent variable w. Consequently, instead 
of having to deal with n + 1 coefficients (functions of x and y j  we are merely left with 
one function of x, y and y, of course. In addition to that it turns out that, as regards 
the independent variable y, this unique function of x , y ,  y is a polynomial in y, and 
this is very helpful. 

4. Application 

We shall prove the following. 

Proposition. For two-dimensional conservative systems, second integrals of motion of 
the form 

cp = (Y,(x, y ) x m  + a , - , ( x ,  y ) X m - I y + *  ' * +  cu,(x, y j x j m - l + a o ( X ,  y)," (4.1) 

(homogeneous polynomial in x, j of degree m )  correspond to potential functions of 
the form U = U['co(x2 + y'j + c ,x  + c,y + c*] where co, c 1 ,  c2, c* are constants. 
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Apart from a suitable change of coordinates this means that no integrals of the form 
(4.1) exist, except for those associated with the angular momentum integral. This 
statement was proved recently by Thompson (1984) who commented on a paper by 
Xanthopoulos (1984). Using Killing tensors, Thompson proved the above proposition 
for m = 1 ,2  and 3 and asserted that it can be generalised for any m but 'the calculations 
become rather cumbersome'. 

We present here, as an application of formula (3 .5) ,  a straightforward proof for 
any m. The reasoning goes as follows. If c p ( x , y , X , j )  in (4.1) is indeed a second 
integral, corresponding to the potential function U ( x ,  y )  then, by virtue of the transfor- 
mation (2.10), the function 

m - ' + .  . .+(- l )mao] (4.2) @ ( x , Y ,  Y , w ) = ( - E ) m ( p + y q )  [amym-am-lY 

(4.3) 

and 
of the independent variable appear and this readily leads to the following 

m / 2  -m/2  

must satisfy equation (3.5).  We then seek a solution of (3 .5)  of the form 

W X ,  y ,  Y,  w )  = (P+ Yq)m12W-m12F(X, Y,  Y ) .  

Inserting the expression (4.3) into (3.5) we observed that only two powers 

two equations for the unique unknown function F = F ( x ,  y,  y ) :  

W - m / 2 + l  

yFx - F, = 0 
and 

( 4 . 4 ~ )  

(P+ Y q F ,  = mqF. (4.4b) 

The general solution of equation (4.4b) is 

F(x ,  Y ,  Y )  = ( P  + yq)"g(x, Y )  (4.5) 

where g(x ,  y )  is an arbitrary function of its arguments x, y.  Inserting the solution into 
equation ( 4 . 4 ~ )  and arranging the result in powers of y, we obtain 

( msg + qgx 1 Y' + ( mrg + p g ,  1 - ( mtg + 48, ) 1 Y - ( msg + pg, ) = 0. (4.6 ) 

Since y is an independent variable, the function g = g ( x ,  y )  must satisfy the system 
of equations 

( 4 . 7 ~ )  

mrg +pgx = mtg + qg, (4.76) 

(4.7c) 

Since U ( x ,  y )  depends both on x and y ,  both p and q are different from zero. In fact, 
equation (4.76) can also be written, in view of equations ( 4 . 7 ~ )  and (4.7c), as 

- .  
s = r - t .  PL - qL 

P9 
(4.8) 

On the other hand, equations ( 4 . 7 ~ )  and ( 4 . 7 ~ )  are compatible if and only if 

( s / q ) ,  = ( S / P ) X .  (4.9) 
The general solution of this last equation is 

U =  U ( z )  (4.10) 
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with 

z = . ( X I  + P ( Y )  (4.11) 

and ( ~ ( x ) ,  P ( y )  arbitrary functions of x and y, respectively. The solution of equations 
(4.7~) and (4.7~) for g is 

(4.12) 

We now demand that the solution (4.10) also satisfies equation (4.8) (which has 

(a”--p”) U, = 0 (4.13) 

where primes in a and P denote differentiation with respect to x and y ,  respectively. 
The conclusion is that 

, I ” P ” =  CO (4.14) 

g ( x ,  v) = c”/ U,” 
where c is a constant and U, # 0. 

replaced equation (4.76)) and this leads directly to the equation 

i.e. 

a ( x )  = :cox2+ c , x +  c3 (4.15 a )  

P ( y )  = c2y+ c4 (4.15b) 

where co, c1, c 2 ,  cj, c4 are all constants. Therefore 

U =  U [ ~ c o ( x 2 + y ~ ) + c , x + C 2 y + C * ]  (4.16) 
with c*  = c3+ c4, i.e. U is the potential function of a central force field, centred, for 
co# 0, at the point (-cl/co, -c2/c0) and this completes the proof of the proposition. 

The integral q ( x ,  y,  x, y)  = constant itself can be found directly as follows. Since 
@ ( x ,  y ,  y, w )  = constant, from equations (4.3), (4.5) and (4.12) we obtain 

( p +  =constant. (4.17) 

Taking into account equations (2.9), (2.11) and also (4.10) and (4.11), we write 

(4.18) 
and this expresses the constancy of the angular momentum integral with respect to 
the point (-cl/co, -c2/co). 

For co = 0, equation (4.18) expresses the constancy of the linear momentum along 
a line in the xy plane. 

(4.17) as jra’-xp’=constant, or, finally, in view of equations (4.15a, b), as 

c0(xj - xy) + c l j  - c2x = constant 
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